Android Malware Detection with Machine Learning

by ; ; ; ;
Format: Paperback
Pub. Date: 2023-11-07
Publisher(s): No Starch Press
List Price: $54.01

Buy New

Usually Ships in 5-7 Business Days
$51.44

Rent Book

Select for Price
There was a problem. Please try again later.

Used Book

We're Sorry
Sold Out

eBook

We're Sorry
Not Available

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

Written by machine-learning researchers and members of the Android Security team, this all-star guide tackles the analysis and detection of malware that targets the Android operating system.

This comprehensive guide to Android malware introduces current threats facing the world’s most widely used operating system. After exploring the history of attacks seen in the wild since the time Android first launched, including several malware families previously absent from the literature, you’ll practice static and dynamic approaches to analyzing real malware specimens. Next, you’ll examine the machine-learning techniques used to detect malicious apps, the types of classification models that defenders can use, and the various features of malware specimens that can become input to these models. You’ll then adapt these machine-learning strategies to the identification of malware categories like banking trojans, ransomware, and SMS fraud.

You’ll learn: 

  • How historical Android malware can elevate your understanding of current threats 
  • How to manually identify and analyze current Android malware using static and dynamic reverse-engineering tools
  • How machine-learning algorithms can analyze thousands of apps to detect malware at scale

Author Biography

Qian Han, Research Scientist at Meta since 2021, received his PhD in Computer Science from Dartmouth College and  his Bachelor’s in Electronic Engineering from Tsinghua University, Beijing, China.

Sai Deep Tetali, Principal Engineer and Tech Lead Manager at Meta, works on privacy solutions for augmented and virtual reality applications. He spent 5 years at Google developing machine learning techniques to detect Android malware and has a PhD from University of California Los Angeles.

Salvador Mandujano, Security Engineering Manager at Google, has led product security engineering, malware reverse engineering and payments security teams. Before Google, he held senior security research and architecture positions at Intel and Nvidia. He has a PhD in Artificial Intelligence from Tecnológico de Monterrey, an MSc in Computer Science from Purdue, an MBA from The University of Texas, and a BSc in Computer Engineering from Universidad Nacional Autónoma de México.

Sebastian Porst is manager of Google’s Android Application Security Research team, which tries to predict or research novel attacks on Android devices and Android users by malware or through app vulnerabilities. He has an MSc Masters from Trier University of Applied Sciences, Germany in 2007.

V.S. Subrahmanian is the Walter P. Murphy Professor of Computer Science and Buffet Faculty Fellow in the Buffet Institute of Global Affairs at Northwestern University. Prof. Subrahmanian is one of the world’s foremost experts at the intersection of AI and security issues. He has written eight books, edited ten, and published over 300 refereed articles.

Yanhai Xiong is currently an Assistant Professor in the Department of Computer Science and Engineering at the University of Louisville. She has a PhD from, Nanyang Technological University focusing on applying AI techniques to improve the efficiency of electric vehicle infrastructure and a BS in Engineering from the University of Science and Technology of China.

Table of Contents

Foreword
Introduction
Part 1: A Primer on Android Malware
Chapter 1: Introduction to Android Security
Chapter 2: Android Malware in the Wild
Part 2: Manual Analysis
Chapter 3: Static Analysis
Chapter 4: Dynamic Analysis
Part 3: Machine Learning Detection
Chapter 5: Machine Learning Fundamentals
Chapter 6: Machine Learning Features
Chapter 7: Rooting Malware
Chapter 8: Spyware
Chapter 9: Banking Trojans
Chapter 10: Ransomware
Chapter 11: SMS Fraud
Chapter 12: The Future of Android Malware
Index

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.