Preface |
|
xiii | |
|
Introduction to Forecasting |
|
|
1 | (14) |
|
The History of Forecasting |
|
|
1 | (1) |
|
|
1 | (2) |
|
|
3 | (1) |
|
Macroeconomic Forecasting Considerations |
|
|
4 | (1) |
|
Choosing a Forecasting Method |
|
|
4 | (1) |
|
|
5 | (1) |
|
Managing the Forecasting Process |
|
|
6 | (1) |
|
Computer Forecasting Packages |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
Case 1-2: Consumer Credit Counseling |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (3) |
|
A Review of Basic Statistical Concepts |
|
|
15 | (42) |
|
Describing Data with Numerical Summaries |
|
|
15 | (4) |
|
Displays of Numerical Information |
|
|
19 | (3) |
|
Probability Distributions |
|
|
22 | (4) |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
29 | (3) |
|
|
31 | (1) |
|
|
32 | (3) |
|
|
32 | (3) |
|
|
35 | (2) |
|
|
37 | (2) |
|
|
39 | (3) |
|
Application to Management |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
43 | (2) |
|
|
45 | (5) |
|
Case 2-1: Alcom Electronics |
|
|
50 | (1) |
|
|
51 | (1) |
|
Case 2-3: Alomega Food Stores |
|
|
52 | (1) |
|
|
53 | (2) |
|
|
55 | (1) |
|
|
56 | (1) |
|
Exploring Data Patterns and Choosing a Forecasting Technique |
|
|
57 | (44) |
|
Exploring Time Series Data Patterns |
|
|
58 | (2) |
|
Exploring Data Patterns with Autocorrelation Analysis |
|
|
60 | (14) |
|
|
65 | (2) |
|
Do the Data Have a Trend? |
|
|
67 | (2) |
|
|
69 | (5) |
|
Choosing a Forecasting Technique |
|
|
74 | (4) |
|
Forecasting Techniques for Stationary Data |
|
|
75 | (1) |
|
Forecasting Techniques for Data with a Trend |
|
|
75 | (1) |
|
Forecasting Techniques for Seasonal Data |
|
|
76 | (1) |
|
Forecasting Techniques for Cyclical Series |
|
|
76 | (1) |
|
Other Factors to Consider When Choosing a Forecasting Technique |
|
|
77 | (1) |
|
Empirical Evaluation of Forecasting Methods |
|
|
77 | (1) |
|
Measuring Forecasting Error |
|
|
78 | (3) |
|
Basic Forecasting Notation |
|
|
79 | (2) |
|
Determining the Adequacy of a Forecasting Technique |
|
|
81 | (2) |
|
Application to Management |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (5) |
|
Case 3-1A: Murphy Brothers Furniture |
|
|
90 | (2) |
|
Case 3-1B: Murphy Brothers Furniture |
|
|
92 | (1) |
|
|
92 | (2) |
|
Case 3-3: Consumer Credit Counseling |
|
|
94 | (1) |
|
Case 3-4: Alomega Food Stores |
|
|
94 | (1) |
|
|
95 | (3) |
|
|
98 | (2) |
|
|
100 | (1) |
|
Moving Averages and Smoothing Methods |
|
|
101 | (56) |
|
|
102 | (3) |
|
Forecasting Methods Based on Averaging |
|
|
105 | (9) |
|
|
105 | (2) |
|
|
107 | (3) |
|
|
110 | (4) |
|
Exponential Smoothing Methods |
|
|
114 | (16) |
|
Exponential Smoothing Adjusted for Trend: Holt's Method |
|
|
121 | (5) |
|
Exponential Smoothing Adjusted for Trend and Seasonal Variation: Winters' Method |
|
|
126 | (4) |
|
Application to Management |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
131 | (2) |
|
|
133 | (6) |
|
Case 4-1: The Solar Alternative Company |
|
|
139 | (1) |
|
|
140 | (1) |
|
Case 4-3: Consumer Credit Counseling |
|
|
141 | (1) |
|
Case 4-4: Murphy Brothers Furniture |
|
|
141 | (1) |
|
Case 4-5: Five-Year Revenue Projection for Downtown Radiology |
|
|
142 | (6) |
|
|
148 | (2) |
|
|
150 | (1) |
|
Excel Applications: CB Predictor |
|
|
151 | (4) |
|
|
155 | (2) |
|
Time Series and Their Components |
|
|
157 | (54) |
|
|
158 | (2) |
|
|
160 | (11) |
|
|
164 | (2) |
|
|
166 | (1) |
|
|
167 | (4) |
|
|
171 | (6) |
|
Cyclical and Irregular Variations |
|
|
172 | (5) |
|
Forecasting a Seasonal Time Series |
|
|
177 | (2) |
|
The Census II Decomposition Method |
|
|
179 | (2) |
|
Application to Management |
|
|
181 | (1) |
|
|
182 | (2) |
|
|
184 | (1) |
|
|
184 | (1) |
|
|
185 | (6) |
|
Case 5-1: The Small Engine Doctor |
|
|
191 | (1) |
|
|
192 | (4) |
|
Case 5-3: Consumer Credit Counseling |
|
|
196 | (1) |
|
Case 5-4: Murphy Brothers Furniture |
|
|
197 | (3) |
|
|
200 | (2) |
|
Case 5-6: Alomega Food Stores |
|
|
202 | (1) |
|
|
203 | (3) |
|
|
206 | (3) |
|
|
209 | (2) |
|
|
211 | (58) |
|
|
212 | (4) |
|
Standard Error of the Estimate |
|
|
216 | (1) |
|
|
217 | (3) |
|
Decomposition of Variance |
|
|
220 | (4) |
|
Coefficient of Determination |
|
|
224 | (2) |
|
|
226 | (3) |
|
|
229 | (2) |
|
|
231 | (2) |
|
|
233 | (4) |
|
|
237 | (5) |
|
Application to Management |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (2) |
|
|
245 | (9) |
|
Case 6-1: Tiger Transport |
|
|
254 | (2) |
|
Case 6-2: Butcher Products, Inc. |
|
|
256 | (1) |
|
Case 6-3: Ace Manufacturing |
|
|
257 | (1) |
|
|
258 | (1) |
|
Case 6-5: Consumer Credit Counseling |
|
|
259 | (1) |
|
|
260 | (2) |
|
|
262 | (3) |
|
|
265 | (2) |
|
|
267 | (2) |
|
Multiple Regression Analysis |
|
|
269 | (58) |
|
Several Predictor Variables |
|
|
269 | (1) |
|
|
270 | (1) |
|
Multiple Regression Model |
|
|
271 | (2) |
|
Statistical Model for Multiple Regression |
|
|
271 | (2) |
|
Interpreting Regression Coefficients |
|
|
273 | (1) |
|
Inference for Multiple Regression Models |
|
|
274 | (6) |
|
Standard Error of the Estimate |
|
|
275 | (1) |
|
Significance of the Regression |
|
|
276 | (2) |
|
Individual Predictor Variables |
|
|
278 | (1) |
|
Forecast of a Future Response |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
281 | (4) |
|
|
285 | (3) |
|
Selecting the ``Best'' Regression Equation |
|
|
288 | (7) |
|
|
290 | (2) |
|
|
292 | (2) |
|
Final Notes on Stepwise Regression |
|
|
294 | (1) |
|
Regression Diagnostics and Residual Analysis |
|
|
295 | (2) |
|
|
297 | (1) |
|
|
297 | (1) |
|
Useful Regressions, Large F Ratios |
|
|
298 | (1) |
|
Application to Management |
|
|
298 | (2) |
|
|
300 | (1) |
|
|
300 | (1) |
|
|
301 | (9) |
|
Case 7-1: The Bond Market |
|
|
310 | (3) |
|
|
313 | (2) |
|
Case 7-3: Fantasy Baseball (A) |
|
|
315 | (5) |
|
Case 7-4: Fantasy Baseball (B) |
|
|
320 | (4) |
|
|
324 | (2) |
|
|
326 | (1) |
|
|
326 | (1) |
|
Regression with Time Series Data |
|
|
327 | (54) |
|
Time Series Data and the Problem of Autocorrelation |
|
|
327 | (4) |
|
Durbin-Watson Test for Serial Correlation |
|
|
331 | (3) |
|
Solutions to Autocorrelation Problems |
|
|
334 | (12) |
|
Model Specification Error (Omitting a Variable) |
|
|
335 | (2) |
|
Regression with Differences |
|
|
337 | (5) |
|
Autocorrelated Errors and Generalized Differences |
|
|
342 | (3) |
|
|
345 | (1) |
|
Time Series Data and the Problem of Heteroscedasticity |
|
|
346 | (3) |
|
Using Regression to Forecast Seasonal Data |
|
|
349 | (3) |
|
|
352 | (1) |
|
Application to Management |
|
|
353 | (1) |
|
|
353 | (1) |
|
|
353 | (2) |
|
|
355 | (7) |
|
Case 8-1: Company of Your Choice |
|
|
362 | (1) |
|
Case 8-2: Business Activity Index for Spokane county |
|
|
363 | (4) |
|
Case 8-3: Restaurant Sales |
|
|
367 | (2) |
|
|
369 | (2) |
|
Case 8-5: Consumer Credit Counseling |
|
|
371 | (1) |
|
|
372 | (3) |
|
Case 8-7: Alomega Food Stores |
|
|
375 | (1) |
|
|
376 | (1) |
|
|
377 | (2) |
|
|
379 | (2) |
|
The Box-Jenkins (ARIMA) Methodology |
|
|
381 | (82) |
|
|
381 | (8) |
|
|
386 | (1) |
|
|
387 | (1) |
|
Autoregressive Moving Average Models |
|
|
388 | (1) |
|
|
389 | (1) |
|
Implementing the Model-Building Strategy |
|
|
389 | (39) |
|
Step 1: Model Identification |
|
|
389 | (2) |
|
|
391 | (1) |
|
|
392 | (1) |
|
Step 4: Forecasting with the Model |
|
|
392 | (19) |
|
|
411 | (1) |
|
|
412 | (2) |
|
|
414 | (10) |
|
Simple Exponential Smoothing and an ARIMA Model |
|
|
424 | (2) |
|
Advantages and Disadvantages of ARIMA Models |
|
|
426 | (2) |
|
Application to Management |
|
|
428 | (1) |
|
|
429 | (1) |
|
|
429 | (1) |
|
|
430 | (10) |
|
Case 9-1: Restaurant Sales |
|
|
440 | (2) |
|
|
442 | (2) |
|
Case 9-3: Consumer Credit Counseling |
|
|
444 | (1) |
|
Case 9-4: The Lydia E. Pinkham Medicine Company |
|
|
444 | (3) |
|
Case 9-5: City of College Station |
|
|
447 | (3) |
|
Case 9-6: UPS Air Finance Division |
|
|
450 | (3) |
|
|
453 | (2) |
|
|
455 | (2) |
|
Excel Applications: CB Predictor |
|
|
457 | (3) |
|
|
460 | (3) |
|
Judgmental Forecasting and Forecast Adjustments |
|
|
463 | (22) |
|
|
464 | (3) |
|
|
467 | (1) |
|
|
468 | (2) |
|
Forecasting and Neural Networks |
|
|
470 | (2) |
|
Summary of Judgmental Forecasting |
|
|
472 | (1) |
|
Other Tools Useful in Making Judgments About the Future |
|
|
473 | (4) |
|
|
477 | (1) |
|
|
478 | (1) |
|
Case 10-1: Golden Gardens Restaurant |
|
|
478 | (1) |
|
Case 10-2: Alomega Food Stores |
|
|
479 | (1) |
|
Case 10-3: The Lydia E. Pinkham Medicine Company Revisited |
|
|
480 | (2) |
|
|
482 | (3) |
|
Managing the Forecasting Process |
|
|
485 | (18) |
|
|
485 | (1) |
|
|
486 | (5) |
|
Forecasting Steps Reviewed |
|
|
491 | (1) |
|
Forecasting Responsibility |
|
|
492 | (1) |
|
|
493 | (1) |
|
Forecasting and the MIS System |
|
|
493 | (1) |
|
Selling Management on Forecasting |
|
|
494 | (1) |
|
The Future of Forecasting |
|
|
494 | (1) |
|
|
495 | (1) |
|
Case 11-1: Boundary Electronics |
|
|
495 | (1) |
|
Case 11-2: Busby Associates |
|
|
496 | (3) |
|
Case 11-3: Consumer Credit Counseling |
|
|
499 | (1) |
|
|
500 | (1) |
|
Case 11-5: Alomega Food Stores |
|
|
501 | (1) |
|
|
501 | (2) |
|
|
503 | (2) |
|
|
503 | (1) |
|
|
503 | (1) |
|
|
503 | (2) |
|
APPENDIX B Data for Case 7-1 |
|
|
505 | (2) |
|
|
507 | (10) |
|
Table C-1 Individual Terms of the Binomial Distribution |
|
|
507 | (2) |
|
Table C-2 Table of Areas for Standard Normal Probability Distribution |
|
|
509 | (1) |
|
Table C-3 Critical Values of t |
|
|
510 | (1) |
|
Table C-4 Critical Values of Chi-Square |
|
|
511 | (2) |
|
Table C-5 Table of F Distribution |
|
|
513 | (1) |
|
Table C-6 Durbin-Watson Test Bounds |
|
|
514 | (3) |
|
APPENDIX D Data Sets and Databases |
|
|
517 | (14) |
Index |
|
531 | |