Equilibrium Monte Carlo simulations |
|
|
|
3 | (28) |
|
|
3 | (4) |
|
|
7 | (11) |
|
Fluctuations, correlations and responses |
|
|
10 | (5) |
|
An example: the Ising model |
|
|
15 | (3) |
|
|
18 | (4) |
|
|
21 | (1) |
|
A brief history of the Monte Carlo method |
|
|
22 | (9) |
|
|
29 | (2) |
|
The principles of equilibrium thermal Monte Carlo simulation |
|
|
31 | (14) |
|
|
31 | (2) |
|
|
33 | (7) |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
36 | (4) |
|
|
40 | (2) |
|
Continuous time Monte Carlo |
|
|
42 | (3) |
|
|
44 | (1) |
|
The Ising model and the Metropolis algorithm |
|
|
45 | (42) |
|
|
46 | (7) |
|
Implementing the Metropolis algorithm |
|
|
49 | (4) |
|
|
53 | (4) |
|
|
57 | (11) |
|
Autocorrelation functions |
|
|
59 | (6) |
|
Correlation times and Markov matrices |
|
|
65 | (3) |
|
|
68 | (5) |
|
Estimation of statistical errors |
|
|
68 | (1) |
|
|
69 | (2) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
Measuring correlation functions |
|
|
74 | (2) |
|
|
76 | (11) |
|
|
82 | (2) |
|
Critical fluctuations and critical showing down |
|
|
84 | (1) |
|
|
85 | (2) |
|
Other algorithms for the Ising model |
|
|
87 | (46) |
|
Critical exponents and their measurement |
|
|
87 | (4) |
|
|
91 | (5) |
|
Acceptance ratio for a cluster algorithm |
|
|
93 | (3) |
|
Properties of the Wolff algorithm |
|
|
96 | (10) |
|
The correlation time and the dynamic exponent |
|
|
100 | (2) |
|
The dynamic exponent and the susceptibility |
|
|
102 | (4) |
|
Further algorithms for the Ising model |
|
|
106 | (13) |
|
The Swendsen--Wang algorithm |
|
|
106 | (3) |
|
|
109 | (3) |
|
|
112 | (2) |
|
The invaded cluster algorithm |
|
|
114 | (5) |
|
|
119 | (14) |
|
|
120 | (5) |
|
Cluster algorithms for Potts models |
|
|
125 | (2) |
|
|
127 | (5) |
|
|
132 | (1) |
|
The conserved-order-parameter Ising model |
|
|
133 | (18) |
|
|
138 | (3) |
|
|
140 | (1) |
|
More efficient algorithms |
|
|
141 | (4) |
|
A continuous time algorithm |
|
|
143 | (2) |
|
Equilibrium crystal shapes |
|
|
145 | (6) |
|
|
150 | (1) |
|
|
151 | (28) |
|
|
153 | (6) |
|
The random-field Ising model |
|
|
154 | (3) |
|
|
157 | (2) |
|
Simulation of glassy systems |
|
|
159 | (2) |
|
The entropic sampling method |
|
|
161 | (8) |
|
|
162 | (1) |
|
Internal energy and specific heat |
|
|
163 | (1) |
|
Implementing the entropic sampling method |
|
|
164 | (2) |
|
An example: the random-field Ising model |
|
|
166 | (3) |
|
|
169 | (10) |
|
|
169 | (5) |
|
|
174 | (3) |
|
|
177 | (2) |
|
|
179 | (31) |
|
|
179 | (8) |
|
Arrangement of the protons |
|
|
182 | (1) |
|
|
183 | (3) |
|
|
186 | (1) |
|
Monte Carlo algorithms for square ice |
|
|
187 | (4) |
|
The standard ice model algorithm |
|
|
188 | (1) |
|
|
189 | (2) |
|
|
191 | (1) |
|
|
191 | (2) |
|
Algorithms for the three-colour model |
|
|
193 | (3) |
|
Comparison of algorithms for square ice |
|
|
196 | (5) |
|
|
201 | (9) |
|
Loop algorithms for energetic ice models |
|
|
202 | (3) |
|
Cluster algorithms for energetic ice models |
|
|
205 | (4) |
|
|
209 | (1) |
|
Analysing Monte Carlo data |
|
|
210 | (53) |
|
The single histogram method |
|
|
211 | (8) |
|
|
217 | (1) |
|
Extrapolating in other variables |
|
|
218 | (1) |
|
The multiple histogram method |
|
|
219 | (10) |
|
|
226 | (2) |
|
Interpolating other variables |
|
|
228 | (1) |
|
|
229 | (11) |
|
Direct measurement of critical exponents |
|
|
230 | (2) |
|
The finite size scaling method |
|
|
232 | (4) |
|
Difficulties with the finite size scaling method |
|
|
236 | (4) |
|
Monte Carlo renormalization group |
|
|
240 | (18) |
|
Real-space renormalization |
|
|
240 | (6) |
|
Calculating critical exponents: the exponent ν |
|
|
246 | (4) |
|
Calculating other exponents |
|
|
250 | (1) |
|
The exponents δ and &thetas; |
|
|
251 | (1) |
|
More accurate transformations |
|
|
252 | (4) |
|
|
256 | (2) |
|
|
258 | (5) |
II Out-of-equilibrium simulations |
|
|
Out-of-equilibrium Monte Carlo simulations |
|
|
263 | (5) |
|
|
264 | (4) |
|
|
266 | (2) |
|
Non-equilibrium simulations of the Ising model |
|
|
268 | (21) |
|
Phase separation and the Ising model |
|
|
268 | (6) |
|
Phase separation in the ordinary Ising model |
|
|
271 | (1) |
|
Phase separation in the COP Ising model |
|
|
271 | (3) |
|
|
274 | (4) |
|
|
274 | (3) |
|
|
277 | (1) |
|
Phase separation in the 3D Ising model |
|
|
278 | (4) |
|
A more efficient algorithm |
|
|
279 | (1) |
|
A continuous time algorithm |
|
|
280 | (2) |
|
|
282 | (7) |
|
Bulk diffusion and surface diffusion |
|
|
283 | (1) |
|
A bulk diffusion algorithm |
|
|
284 | (4) |
|
|
288 | (1) |
|
Monte Carlo simulations in surface science |
|
|
289 | (18) |
|
Dynamics, algorithms and energy barriers |
|
|
292 | (9) |
|
Dynamics of a single adatom |
|
|
293 | (3) |
|
|
296 | (5) |
|
|
301 | (3) |
|
Kawasaki and bond-counting algorithms |
|
|
301 | (1) |
|
|
302 | (2) |
|
An example: molecular beam epitaxy |
|
|
304 | (3) |
|
|
306 | (1) |
|
|
307 | (24) |
|
|
307 | (2) |
|
|
309 | (6) |
|
The projected repton model |
|
|
313 | (1) |
|
Values of the parameters in the model |
|
|
314 | (1) |
|
Monte Carlo simulation of the repton model |
|
|
315 | (7) |
|
|
316 | (2) |
|
|
318 | (2) |
|
Representing configurations of the repton model |
|
|
320 | (2) |
|
Results of Monte Carlo simulations |
|
|
322 | (9) |
|
Simulations in zero electric field |
|
|
323 | (1) |
|
Simulations in non-zero electric field |
|
|
323 | (4) |
|
|
327 | (4) |
III Implementation |
|
|
Lattices and data structures |
|
|
331 | (25) |
|
Representing lattices on a computer |
|
|
332 | (11) |
|
Square and cubic lattices |
|
|
332 | (3) |
|
Triangular, honeycomb and Kagome lattices |
|
|
335 | (5) |
|
Fcc, bcc and diamond lattices |
|
|
340 | (2) |
|
|
342 | (1) |
|
|
343 | (13) |
|
|
343 | (2) |
|
|
345 | (1) |
|
|
345 | (3) |
|
|
348 | (4) |
|
|
352 | (3) |
|
|
355 | (1) |
|
Monte Carlo simulations on parallel computers |
|
|
356 | (8) |
|
Trivially parallel algorithms |
|
|
358 | (1) |
|
More sophisticated parallel algorithms |
|
|
359 | (5) |
|
The Ising model with the Metropolis algorithm |
|
|
359 | (2) |
|
The Ising model with a cluster algorithm |
|
|
361 | (1) |
|
|
362 | (2) |
|
|
364 | (18) |
|
|
365 | (4) |
|
The one-dimensional Ising model |
|
|
365 | (2) |
|
The two-dimensional Ising model |
|
|
367 | (2) |
|
Implementing multispin-coded algorithms |
|
|
369 | (1) |
|
Truth tables and Karnaugh maps |
|
|
369 | (4) |
|
A multispin-coded algorithm for the repton model |
|
|
373 | (6) |
|
Synchronous update algorithms |
|
|
379 | (3) |
|
|
380 | (2) |
|
|
382 | (28) |
|
Generating uniformly distributed random numbers |
|
|
382 | (14) |
|
|
384 | (1) |
|
|
385 | (1) |
|
Linear congruential generators |
|
|
386 | (4) |
|
Improving the linear congruential generator |
|
|
390 | (2) |
|
Shift register generators |
|
|
392 | (1) |
|
Lagged Fibonacci generators |
|
|
393 | (3) |
|
Generating non-uniform random numbers |
|
|
396 | (10) |
|
The transformation method |
|
|
396 | (3) |
|
Generating Gaussian random numbers |
|
|
399 | (2) |
|
|
401 | (3) |
|
|
404 | (2) |
|
|
406 | (4) |
|
|
409 | (1) |
References |
|
410 | (45) |
Appendices |
|
|
|
417 | (16) |
|
|
433 | (5) |
|
B.1 Algorithms for the Ising model |
|
|
433 | (1) |
|
B.1.1 Metropolis algorithm |
|
|
433 | (2) |
|
B.1.2 Multispin-coded Metropolis algorithm |
|
|
435 | (2) |
|
|
437 | (1) |
|
B.2 Algorithms for the COP Ising model |
|
|
438 | (17) |
|
B.2.1 Non-local algorithm |
|
|
438 | (3) |
|
B.2.2 Continuous time algorithm |
|
|
441 | (4) |
|
B.3 Algorithms for Potts models |
|
|
445 | (3) |
|
B.4 Algorithms for ice models |
|
|
448 | (3) |
|
B.5 Random number generators |
|
|
451 | (1) |
|
B.5.1 Linear congruential generator |
|
|
451 | (1) |
|
B.5.2 Shuffled linear congruential generator |
|
|
452 | (1) |
|
B.5.3 Lagged Fibonacci generator |
|
|
452 | (3) |
Index |
|
455 | |