Multiscale Modeling and Simulation of Composite Materials and Structures

by ; ;
Format: Hardcover
Pub. Date: 2007-11-02
Publisher(s): Springer Nature
  • eCampus.com Device Compatibility Matrix

    Click the device icon to install or view instructions

    Apple iOS | iPad, iPhone, iPod
    Apple iOS | iPad, iPhone, iPod
    Android Devices | Android Tables & Phones OS 2.2 or higher | *Kindle Fire
    Android Devices | Android Tables & Phones OS 2.2 or higher | *Kindle Fire
    Windows 10 / 8 / 7 / Vista / XP
    Windows 10 / 8 / 7 / Vista / XP
    Mac OS X | **iMac / Macbook
    Mac OS X | **iMac / Macbook
    Enjoy offline reading with these devices
    Apple Devices
    Android Devices
    Windows Devices
    Mac Devices
    iPad, iPhone, iPod
    Our reader is compatible
     
     
     
    Android 2.2 +
     
    Our reader is compatible
     
     
    Kindle Fire
     
    Our reader is compatible
     
     
    Windows
    10 / 8 / 7 / Vista / XP
     
     
    Our reader is compatible
     
    Mac
     
     
     
    Our reader is compatible
List Price: $302.51

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:30 Days access
Downloadable:30 Days
$75.24
Online:60 Days access
Downloadable:60 Days
$100.32
Online:90 Days access
Downloadable:90 Days
$125.40
Online:120 Days access
Downloadable:120 Days
$150.48
Online:180 Days access
Downloadable:180 Days
$163.02
Online:1825 Days access
Downloadable:Lifetime Access
$250.80
*To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.
$163.02*

New Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

Researchers are interested in the development of modeling methods applied to predicting the atomistic, microscopic and macroscopic response of composite materials under stress and hostile environment. Material behaviors at the macroscale level are controlled by their characteristics at lower scale levels. This fact is even more significant for composite materials. As a result, in order to design and analyze composite structures as well as new composite materials, it is necessary to model material behaviors at different length scales and to couple them. This book presents the state of the art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology.This book will provide useful information for engineers for better design and analysis of composite structures. It will also serve as an invaluable reference for researchers.

Author Biography

Dr. Kwon is Professor of Mechanical and Aeronautical Engineering Department of Naval Postgraduate School (NPS) in Monterey, California. He was the past Chair of the department. He was also Professor and Chair of the Department of Mechanical Engineering and Energy Processes of Southern Illinois University Carbondale (SIUC). He received his Ph.D. degree from Rice University, MS degree from Oklahoma State University, and B.S. degree from Seoul National University, all in mechanical engineering. Dr. Allen earned a bachelor's degree in aerospace engineering at A&M (1972) and spent three years as a weather officer in the U.S. Air Force before returning to College Station to earn a master's degree in civil engineering in 1977 and a doctorate in aerospace engineering in 1980. He is a fellow and past president of the Society of Engineering Science, a fellow of the American Society of Mechanical Engineers and an associate fellow of the American Institute of Aeronautics and Astronautics. He has received numerous awards, but is most proud of the Distinguished Teaching Award he received in 1999 from the Texas A&M University Association of Former Students.

Table of Contents

Prefacep. v
Account for Random Microstructure in Multiscale Modelsp. 1
Multiscale Modeling of Tensile Failure in Fiber-Reinforced Compositesp. 37
Adaptive Concurrent Multi-Level Model for Multiscale Analysis of Composite Materials Including Damagep. 83
Multiscale and Multilevel Modeling of Compositesp. 165
A Micromechanics-Based Notion of Stress for Use in the Determination of Continuum-Level Mechanical Properties via Molecular Dynamicsp. 203
Multiscale Modeling and Simulation of Deformation in Nanoscale Metallic Multilayered Compositesp. 235
Multiscale Modeling of Composites Using Analytical Methodsp. 271
Nested Nonlinear Multiscale Frameworks for the Analysis of Thick-Section Composite Materials and Structuresp. 317
Predicting Thermooxidative Degradation and Performance of High-Temperature Polymer Matrix Compositesp. 359
Modeling of Stiffness, Strength, and Structure-Property Relationship in Crosslinked Silica Aerogelp. 463
Multiscale Modeling of the Evolution of Damage in Heterogeneous Viscoelastic Solidsp. 495
Multiscale Modeling for Damage Analysisp. 529
Hierarchical Modeling of Deformation of Materials from the Atomic to the Continuum Scalep. 579
Indexp. 625
Table of Contents provided by Ingram. All Rights Reserved.

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.