Organic Crystal Engineering Frontiers in Crystal Engineering

by ; ;
Edition: 1st
Format: eBook
Pub. Date: 2010-01-11
Publisher(s): Wiley
  • eCampus.com Device Compatibility Matrix

    Click the device icon to install or view instructions

    Apple iOS | iPad, iPhone, iPod
    Apple iOS | iPad, iPhone, iPod
    Android Devices | Android Tables & Phones OS 2.2 or higher | *Kindle Fire
    Android Devices | Android Tables & Phones OS 2.2 or higher | *Kindle Fire
    Windows 10 / 8 / 7 / Vista / XP
    Windows 10 / 8 / 7 / Vista / XP
    Mac OS X | **iMac / Macbook
    Mac OS X | **iMac / Macbook
    Enjoy offline reading with these devices
    Apple Devices
    Android Devices
    Windows Devices
    Mac Devices
    iPad, iPhone, iPod
    Our reader is compatible
     
     
     
    Android 2.2 +
     
    Our reader is compatible
     
     
    Kindle Fire
     
    Our reader is compatible
     
     
    Windows
    10 / 8 / 7 / Vista / XP
     
     
    Our reader is compatible
     
    Mac
     
     
     
    Our reader is compatible
List Price: $299.63

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:1825 Days access
Downloadable:Lifetime Access
$248.40
*To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.
$248.40*

New Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

Summary

Organic Crystal Engineering provides reviews of topics in organic crystal engineering that will be of interest to all researchers in molecular solid-state chemistry. Specialist reviews written by internationally recognized researchers, drawn from both academia and industry, cover topics including crystal structure prediction features, polymorphism, reactions in the solid-state, designing new arrays and delineating prominent intermolecular forces for important organic molecules.

Table of Contents

List of Contributors.

Preface.

1 The Role of the Cambridge Structural Database in Crystal Engineering (Andrew D. Bond).

1.1 Introduction.

1.2 Organisation and Management of Crystallographic Information.

1.3 Organisation of Crystallographic Information for Crystal Engineering.

1.4 New Tools for Database Research.

1.5 Search for Functional Group Exchanges: GRX.

1.6 Search for Solvated and Unsolvated Structures: Solvates.

1.7 Clustering and Classifying CSD Search Results: dSNAP.

1.8 The PXRD Profile as a Structural Descriptor.

1.9 Identifying Supramolecular Constructs: XPac.

1.10 Concluding Remarks: the Future Role of Crystallographic Databases.

References.

2 Computational Crystal Structure Prediction: Towards In Silico Solid Form Screening (Graeme M. Day).

2.1 Introduction.

2.2 Methods used to Predict Crystal Structures.

2.3 Current Capabilities of Crystal Structure Prediction.

2.4 Exploration of Crystal Forms. A Case Study: Carbamazepine.

2.5 Summary.

Acknowledgments.

References.

3 Multi-component Pharmaceutical Crystalline Phases: Engineering for Performance (Matthew L. Peterson, Edwin A. Collier, Magali B. Hickey, Hector Guzman and Örn Almarsson).

3.1 Introduction.

3.2 Exploring Crystal Form Diversity.

3.3 High-throughput Experimentation.

3.4 Examples of ‘Form and Formulation’.

3.5 AMG517 and Celecoxib – ‘Spring and Parachute’ Approach.

3.6 Carbamazepine - Stabilization Against a Hydrate.

3.7 Theophylline:Phenobarbital - Two is Better Than One.

3.8 Delaviridine Mesylate - Material Misbehavior.

3.9 Summary and Outlook.

References.

4 Complex Formation of Surfactants with Aromatic Compounds and their Pharmaceutical Applications (Yuji Ohashi, Keiju Sawada and Nahoko Iimura).

4.1 Introduction.

4.2 Structures of the Complexes Formed Between Surfactants and Aromatic Compounds.

4.3 Complex Formation of Aromatic Compounds Containing an Hetero Ring.

4.4 Complex Formation of Biphenyl with Cationic Surfactants.

4.5 Complex Formation of Odd-Number Surfactants with Biphenyl.

4.6 Common Packing Mode in the Complexes.

4.7 Complex Formation by Grinding in a Mortar.

4.8 C-H...p interactions.

4.9 Complex Formation of Anionic Surfactants with Aromatic Compounds.

4.10 Increased Solubility of Insoluble Drugs.

4.11 Enhanced Thermal Stability of Perfumes.

4.12 Complex Formation with Surfactants other than Quaternary Alkylammonium Salts.

4.13 Hydroquinone Complexes.

4.14 Application to Whitening Agents.

Acknowledgments.

References.

5 Hydrogen Bonding and Molecular Packing in Multi-Functional Crystal Structures (Ashwini Nangia).

5.1 Introduction.

5.2 Hydrogen Bonding in Ureas and Amides.

5.3 Pyridyl Ureas and Amides.

5.4 Nitrophenyl Ureas and Amides.

5.5 Molecular Conformation and Hydrogen Bonding.

5.6 Supramolecular HSAB Interactions.

5.7 gem-alkynols.

5.8 Conclusions.

Acknowledgments.

References.

6 Persistence of N-H...S Hydrogen Bonding in Thiocarbamide Structures (Edward R. T. Tiekink).

6.1 Introduction.

6.2 Supramolecular Aggregation Patterns in the Thiocarbamides.

6.3 Conclusions.

References.

7 Crystal Engineering with the Molecules Containing Amide and Pyridine Functionalities (Kumar Biradha and Lalit Rajput).

7.1 Introduction.

7.2 Primary Amides Containing the Pyridine Moiety.

7.3 Co-crystals with Primary Amidopyridines.

7.4 Secondary Amides Containing a Pyridine Moiety.

7.5 Bis-Amidopyridine Derivatives.

7.6 Two-component Structures Containing Secondary Amides and Pyridine Derivatives.

7.7 Triamidopyridine Derivatives.

7.8 Conclusions.

Acknowledgements.

References.

8 Urea/Thiourea-Anion Host Lattices, Stabilization of Labile Species, and Designed Construction of Rosette Ribbon and Layers (Thomas C. W. Mak, Chi-Keung Lam, Jie Han, Qi Li and Feng Xue).

8.1 Introduction.

8.2 Inclusion Compounds with Urea/Thiourea-Anion Host Lattices.

8.3 Stabilization of Cyclic Oxocarbon Dianions by Hydrogen Bonding with Urea/Thiourea.

8.4 Supramolecular Assembly Based on the Rosette Motif.

8.5 Conclusion and Outlook.

Acknowledgments.

References.

Index.

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.