
Principles of Broadband Switching and Networking
by Liew, Soung C.; Lee, Tony T.Buy New
Rent Textbook
Used Textbook
We're Sorry
Sold Out
eTextbook
We're Sorry
Not Available
How Marketplace Works:
- This item is offered by an independent seller and not shipped from our warehouse
- Item details like edition and cover design may differ from our description; see seller's comments before ordering.
- Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
- Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
- Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.
Summary
Author Biography
Table of Contents
Preface | p. xiii |
About the Authors | p. xvii |
Introduction and Overview | p. 1 |
Switching and Transmission | p. 2 |
Roles of Switching and Transmission | p. 2 |
Telephone Network Switching and Transmission Hierarchy | p. 4 |
Multiplexing and Concentration | p. 5 |
Timescales of Information Transfer | p. 8 |
Sessions and Circuits | p. 9 |
Messages | p. 9 |
Packets and Cells | p. 9 |
Broadband Integrated Services Network | p. 10 |
Problems | p. 12 |
Circuit Switch Design Principles | p. 15 |
Space-Domain Circuit Switching | p. 16 |
Nonblocking Properties | p. 16 |
Complexity of Nonblocking Switches | p. 18 |
Clos Switching Network | p. 20 |
Benes Switching Network | p. 28 |
Baseline and Reverse Baseline Networks | p. 31 |
Cantor Switching Network | p. 32 |
Time-Domain and Time-Space-Time Circuit Switching | p. 35 |
Time-Domain Switching | p. 35 |
Time-Space-Time Switching | p. 37 |
Problems | p. 39 |
Fundamental Principles of Packet Switch Design | p. 43 |
Packet Contention in Switches | p. 45 |
Fundamental Properties of Interconnection Networks | p. 48 |
Definition of Banyan Networks | p. 49 |
Simple Switches Based on Banyan Networks | p. 51 |
Combinatoric Properties of Banyan Networks | p. 54 |
Nonblocking Conditions for the Banyan Network | p. 54 |
Sorting Networks | p. 59 |
Basic Concepts of Comparison Networks | p. 61 |
Sorting Networks Based on Bitonic Sort | p. 64 |
The Odd-Even Sorting Network | p. 70 |
Switching and Contention Resolution in Sort-Banyan Network | p. 71 |
Nonblocking and Self-Routing Properties of Clos Networks | p. 75 |
Nonblocking Route Assignment | p. 76 |
Recursiveness Property | p. 79 |
Basic Properties of Half-Clos Networks | p. 81 |
Sort-Clos Principle | p. 89 |
Problems | p. 90 |
Switch Performance Analysis and Design Improvements | p. 95 |
Performance of Simple Switch Designs | p. 95 |
Throughput of an Internally Nonblocking Loss System | p. 96 |
Throughput of an Input-Buffered Switch | p. 96 |
Delay of an Input-Buffered Switch | p. 103 |
Delay of an Output-Buffered Switch | p. 112 |
Design Improvements for Input Queueing Switches | p. 113 |
Look-Ahead Contention Resolution | p. 113 |
Parallel Iterative Matching | p. 115 |
Design Improvements Based on Output Capacity Expansion | p. 119 |
Speedup Principle | p. 119x |
Channel-Grouping Principle | p. 121 |
Knockout Principle | p. 131 |
Replication Principle | p. 137 |
Dilation Principle | p. 138 |
Problems | p. 144 |
Advanced Switch Design Principles | p. 151 |
Switch Design Principles Based on Deflection Routing | p. 151 |
Tandem-Banyan Network | p. 151 |
Shuffle-Exchange Network | p. 154 |
Feedback Shuffle-Exchange Network | p. 158 |
Feedback Bidirectional Shuffle-Exchange Network | p. 166 |
Dual Shuffle-Exchange Network | p. 175 |
Switching by Memory I/O | p. 184 |
Design Principles for Scalable Switches | p. 187 |
Generalized Knockout Principle | p. 187 |
Modular Architecture | p. 191 |
Problems | p. 198 |
Switching Principles for Multicast, Multirate, and Multimedia Services | p. 205 |
Multicast Switching | p. 205 |
Multicasting Based on Nonblocking Copy Networks | p. 208 |
Performance Improvement of Copy Networks | p. 213 |
Multicasting Algorithm for Arbitrary Network Topologies | p. 220 |
Nonblocking Copy Networks Based on Broadcast Clos Networks | p. 228 |
Path Switching | p. 235 |
Basic Concept of Path Switching | p. 237 |
Capacity and Route Assignments for Multirate Traffic | p. 242 |
Trade-Off Between Performance and Complexity | p. 249 |
Multicasting in Path Switching | p. 254 |
Appendix | p. 268 |
A Formulation of Effective Bandwidth | p. 268 |
Approximations of Effective Bandwidth Based on On-Off Source Model | p. 269 |
Problems | p. 270 |
Basic Concepts of Broadband Communication Networks | p. 275 |
Synchronous Transfer Mode | p. 275 |
Delays in ATM Network | p. 280 |
Cell Size Consideration | p. 283 |
Cell Networking, Virtual Channels, and Virtual Paths | p. 285 |
No Data Link Layer | p. 285 |
Cell Sequence Preservation | p. 286 |
Virtual-Circuit Hop-by-Hop Routing | p. 286 |
Virtual Channels and Virtual Paths | p. 287 |
Routing, Using VCI and VPI | p. 289 |
Motivations for VP/VC Two-Tier Hierarchy | p. 293 |
ATM Layer, Adaptation Layer, and Service Class | p. 295 |
Transmission Interface | p. 300 |
Approaches Toward IP over ATM | p. 300 |
Classical IP over ATM | p. 301 |
Next Hop Resolution Protocol | p. 302 |
IP Switch and Cell Switch Router | p. 303 |
ARIS and Tag Switching | p. 306 |
Multiprotocol Label Switching | p. 308 |
ATM Cell Format | p. 311 |
ATM Layer | p. 311 |
Adaptation Layer | p. 314 |
Problems | p. 319 |
Network Traffic Control and Bandwidth Allocation | p. 323 |
Fluid-Flow Model: Deterministic Discussion | p. 326 |
Fluid-Flow On-Off Source Model: Stochastic Treatment | p. 332 |
Traffic Shaping and Policing | p. 348 |
Open-Loop Flow Control and Scheduling | p. 354 |
First-Come-First-Serve Scheduling | p. 355 |
Fixed-Capacity Assignment | p. 357 |
Round-Robin Scheduling | p. 358 |
Weighted Fair Queueing | p. 364 |
Delay Bound in Weighted Fair Queueing with Leaky-Bucket Access Control | p. 373 |
Closed-Loop Flow Control | p. 380 |
Problems | p. 381 |
Packet Switching and Information Transmission | p. 385 |
Duality of Switching and Transmission | p. 386 |
Parallel Characteristics of Contention and Noise | p. 390 |
Pseudo Signal-to-Noise Ratio of Packet Switch | p. 390 |
Clos Network with Random Routing as a Noisy Channel | p. 393 |
Clos Network with Deflection Routing | p. 396 |
Cascaded Clos Network | p. 397 |
Analysis of Deflection Clos Network | p. 397 |
Route Assignments and Error-Correcting Codes | p. 402 |
Complete Matching in Bipartite Graphs | p. 402 |
Graphical Codes | p. 405 |
Route Assignments of Benes Network | p. 407 |
Clos Network as Noiseless Channel-Path Switching | p. 410 |
Capacity Allocation | p. 411 |
Capacity Matrix Decomposition | p. 414 |
Scheduling and Source Coding | p. 416 |
Smoothness of Scheduling | p. 417 |
Comparison of Scheduling Algorithms | p. 420 |
Two-Dimensional Scheduling | p. 424 |
Conclusion | p. 430 |
Bibliography | p. 433 |
Table of Contents provided by Ingram. All Rights Reserved. |
An electronic version of this book is available through VitalSource.
This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.
By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.
Digital License
You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.
More details can be found here.
A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.
Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.
Please view the compatibility matrix prior to purchase.