Surface Analysis Methods in Materials Science

by ; ;
Edition: 2nd
Format: Hardcover
Pub. Date: 2003-06-01
Publisher(s): Springer Verlag
  • eCampus.com Device Compatibility Matrix

    Click the device icon to install or view instructions

    Apple iOS | iPad, iPhone, iPod
    Apple iOS | iPad, iPhone, iPod
    Android Devices | Android Tables & Phones OS 2.2 or higher | *Kindle Fire
    Android Devices | Android Tables & Phones OS 2.2 or higher | *Kindle Fire
    Windows 10 / 8 / 7 / Vista / XP
    Windows 10 / 8 / 7 / Vista / XP
    Mac OS X | **iMac / Macbook
    Mac OS X | **iMac / Macbook
    Enjoy offline reading with these devices
    Apple Devices
    Android Devices
    Windows Devices
    Mac Devices
    iPad, iPhone, iPod
    Our reader is compatible
     
     
     
    Android 2.2 +
     
    Our reader is compatible
     
     
    Kindle Fire
     
    Our reader is compatible
     
     
    Windows
    10 / 8 / 7 / Vista / XP
     
     
    Our reader is compatible
     
    Mac
     
     
     
    Our reader is compatible
List Price: $108.03

Rent Textbook

Select for Price
There was a problem. Please try again later.

Rent Digital

Rent Digital Options
Online:30 Days access
Downloadable:30 Days
$19.80
Online:60 Days access
Downloadable:60 Days
$26.40
Online:90 Days access
Downloadable:90 Days
$33.00
Online:120 Days access
Downloadable:120 Days
$39.60
Online:180 Days access
Downloadable:180 Days
$42.90
Online:1825 Days access
Downloadable:Lifetime Access
$65.99
*To support the delivery of the digital material to you, a digital delivery fee of $3.99 will be charged on each digital item.
$42.90*

New Textbook

We're Sorry
Sold Out

Used Textbook

We're Sorry
Sold Out

How Marketplace Works:

  • This item is offered by an independent seller and not shipped from our warehouse
  • Item details like edition and cover design may differ from our description; see seller's comments before ordering.
  • Sellers much confirm and ship within two business days; otherwise, the order will be cancelled and refunded.
  • Marketplace purchases cannot be returned to eCampus.com. Contact the seller directly for inquiries; if no response within two days, contact customer service.
  • Additional shipping costs apply to Marketplace purchases. Review shipping costs at checkout.

Summary

This guide to the use of surface analysis techniques, now in its second edition, has expanded to include more techniques, current applications and updated references. It outlines the application of surface analysis techniques to a broad range of studies in materials science and engineering. The book consists of three parts: an extensive introduction, a techniques section and a section on applications. Each chapter has been written by specialists in the field. This book is aimed at industrial scientists and engineers in R&D seeking a description of available techniques in a concise but informative style. It is invaluable as a comprehensive text for scientists and engineers attending training courses and workshops. The level and content of this book make it ideal as a course text for senior undergraduate and postgraduate students in materials science, materials engineering, physics, chemistry and metallurgy.

Table of Contents

Part I Introduction
1 Solid Surfaces, Their Structure and Composition
C. Klauber, R. St. C. Smart
3(4)
1.1 Importance of the Surface
3(4)
1.2 Solid Surfaces of Different Materials
7(5)
1.2.1 A Material Under Attack: Aluminium
11(1)
1.3 Methods of Surface Analysis
12(1)
1.3.1 Variety of Surface Analytical Techniques
12(1)
1.4 Structural Imaging
13(10)
1.4.1 Direct Physical Imaging
13(15)
1.4.2 Indirect Structural Imaging - Relaxation and Reconstruction
28
1.5 Composition of the Surface Selvedge
23(19)
1.5.1 Electron Inelastic Meun Free Paths
24(4)
1.5.2 Variation of Elemental Sensitivities
28(3)
1.5.3 Practical Detection Limits
31(1)
1.5.4 Practical Bpatial Lömite
32(5)
1.5.5 Chemical State Information
37(4)
1.5.6 Laboratory Standards
41(1)
1.5.7 Inter-laboratory Errors
41(1)
1.6 Defect and Reaction Sites at Surfaces
42(4)
1.7 Electronic Structure at Surfaces
46(3)
1.8 Structures of Adsorbed Layers
49(2)
1.9 Structure in Depth Profiles Through Surfaces
51(4)
1.10 Specific Structures
55(6)
1.10.1 Grain Structures, Phase Distributions and Inclusions
55(1)
1.10.2 Fracture Faces and Intergranular Regions
55(2)
1.10.3 Pore Structures
57(3)
1.10.4 Precipitates, Reaction Products and Recrystallised Particles on Surfaces
60(1)
1.10.5 Magnetic Domains
60(1)
1.11 Technique-Induced Artifacts
61(4)
1.11.1 Radiation Damage 6l
1.11.2 Electrostatic Charging
64(1)
References
65
2 UHV Basics
C. Klauber
7l(78)
2.1 The Need for Ultrahigh Vacuum
71(3)
2.2 Achieving UHV
74(2)
2.3 Specimen Handling
76(2)
2.4 Specimen Handling: ASTM Standards
78(3)
References
81(4)
PART II Techniques
3 Electron Microscope Techniques for Surface Characterization
P.S.Turner, C.E. Nockolds, S. Bullock
85(22)
3.1 What Do We Need to Know About Surface Structures?
86(1)
3.2 Electron Optical Imaging Systems
87(4)
3.2.1 Electron Sources
89(1)
3.2.2 Electron Lenses
3.2.3 Detection Systems
90(1)
3.3 Scanning Electron Microscopy of Surfaces
91(8)
3.3.1 The SEM
91(1)
3.3.2 The Signals and Detectors
92(1)
3.3.3 Resolution and Contrast in SEM Images
93(4)
3.3.4 Variable Pressure SEM and Envrionmental SEM
97(1)
3.3.5 Energy Dispersive X-Ray Spectrometry
98(1)
3.4 Transmission Electron Microscopy of Surfaces
99(4)
3.4.1 The Transmission Electron Microscope
99(2)
3.4.2 Electron Diffraction
101(1)
3.4.3 Image Contrast and Resolution in the TEM
101(1)
3.4.4 Imaging Surface Structures in the TEM
102(1)
3.4.5 Reflection Electron Microscopy
103(1)
3.5 Other Developments
103(1)
References
104(3)
4 Sputter Depth Profiling
B.V. King
107(20)
4.1 Analysis of a Sputter Depth Profile
108(7)
4.1.1 Calibration of the Depth Scale
108(4)
4.1.2 Calibration of the Concentration Scale
112(3)
4.2 The Depth Resolution of Sputter Profiling
115(8)
4.2.1 Specification of the Depth Resolution
115(2)
4.2.2 Instrumental Factors Determining the Depth Resolution
117(2)
4.2.3 Surface Effects Determining the Depth Resolution
119(1)
4.2.4 Bulk Effects Affecting the Depth Resolution
120(1)
4.2.5 Minimisation of the Depth Resolution
121(2)
4.3 Conclusion
123(1)
References
123(4)
5 SIMS - Secondary Ion Mass Spectrometry
R.J. MacDonald, B.V. King
127(28)
5.1 The Practice of SIMS
128(10)
5.1.1 Overview
128(2)
5.1.2 Advantages and Disadvantages of SIMS
130(1)
5.1.3 The Yield of Secondary Ions
131(7)
5.2 Construction of a Secondary Ion Mass Spectrometer
138(7)
5.3 Topics in SIMS Analysis
145(5)
5.3.1 Signal Enhancement by Surface Adsorption
145(2)
5.3.2 Using Secondary Ion Energies in SIMS Analysis
147(2)
5.3.3 The Relative Sensitivity Factor
149(1)
5.4 Static SIMS Analysis
150(3)
References
153(2)
6 Auger Electron Spectroscopy and Microscopy - Techniques and Applications
P.C. Dastoor
155(20)
6.l Introduction
155(1)
6.2 Fundamentals
155(3)
6.3 Instrumentation
158(1)
6.4 Quantification
159(1)
6.5 Techniques
160(9)
6.5.1 Spot Analysis Mode
161(1)
6.5.2 Line Scan Mode
162(1)
6.5.3 Scanning Mode
163(1)
6.5.4 Scanning Auger Microscopy
164(3)
6.5.5 Depth Profiling Mode
167(1)
6.5.6 Preferential Sputtering
167(1)
6.5.7 Attenuation Length
168(1)
6.5.8 Chemical Effects
168(1)
6.6 Applications
169(2)
6.6.1 Thin Film Analysis
169(1)
6.6.2 Surface Diffusion and Segregation
170(1)
6.7 Future
171(1)
References
171(4)
7 X-Ray Photoelectron Spectroscopy
M.H. Kibel
175(28)
7.1 Basic Principles
175(4)
7.1.1 Theory
175(1)
7.1.2 Typical Spectrum
176(2)
7.1.3 Surface Specificity
178(1)
7.2 Instrumentation
179(5)
7.2.1 Essential Components
179(3)
7.2.2 Optional Components
182(1)
7.2.3 Synchrotron Radiation
183(1)
7.2.4 Imaging XPS
183(1)
7.3 Spectral Information
184(5)
7.3.1 Spin-Orbit Splitting
184(1)
7.3.2 Chemical Shifts
185(1)
7.3.3 Auger Chemical Shifts in XPS
186(1)
7.3.4 X-Ray Line Satellites
187(1)
7.3.5 "Shake-up" Lines
187(1)
7.3.6 Ghost Lines
188(1)
7.3.7 Plasmon Loss Lines
189(1)
7.4 Quantitative Analysis
189(2)
7.5 Experimental Techniques
191(4)
7.5.1 Variation of X-Ray Sources
191(1)
7.5.2 Depth Profiles
191(3)
7.5.3 Angular Variations
194(1)
7.5.4 Sample Charging
194(1)
7.6 Comparison with Other Techniques
195(2)
7.7 Applications
197(1)
7.8 Conclusion
197(1)
References
198(5)
8 Vibrational Spectroscopy of Surfaces
R.L. Frost, N.K. Roberts
203(26)
8.1 Introduction
203(3)
8.2 Surface Techniques
206(15)
8.2.1 Diffuse Reflectance Infrared Fourier Transform (DRIFT)
207(2)
8.2.2 Attenuated Total Reflectance Spectroscopy (ATR)
209(7)
8.2.3 Photoacoustic Spectroscopy (PAS)
216(3)
8.2.4 Infrared Emission Spectroscopy (IES)
219(2)
8.3 Fourier transform Raman spectroscopy
221(3)
8.4 Raman Microscopy
224(3)
References
227(2)
9 Rutherford Backscattering Spectrometry end Nuclear Reaction Analysis
S.H. Sie
229(18)
9.1 Introduction
229(2)
9.2 Principles
231(3)
9.2.1 Stopping Power
232(1)
9.2.2 Straggling
233(1)
9.3 Rutherford Backscattering Spectrometry
234(6)
9.3.1 Experimental Considerations
236(1)
9.3.2 Examples
236(2)
9.3.3 Special Cases
238(2)
9.4 Nuclear Reaction Analysis
240(5)
9.4.1 Formalism
241(1)
9.4.2 Experimental Considerations
242(1)
9.4.3 Examples
243(2)
9.5 Summary
245(1)
References
246(1)
10 Materials Characterization by Scanned Probe Analysis
S. Myhra
247(40)
10.1 Introduction
247(4)
10.2 The Surface Analytical Context
251(1)
10.3 Generic SPM Systems
251(2)
10.4 Physical Principles
253(9)
10.4.1 STM/STS
253(3)
10.4.2 Scanning Force Microscopy (SFM)
256(1)
10.4.3 Intermittent Contact Mode
257(1)
10.4.4 F d Analysis
258(2)
10.4.5 Lateral Force Microscopy (LFM)
260(2)
10.5 Procedures for 'Best Practice'
262(5)
10.5.1 Spatial Characteristics of Scanners
263(1)
10.5.2 Determination of cN and cT
264(1)
10.5.3 Determination of Spring Constants
265(1)
10.5.4 Determination of Actual Tip Parameters in the Mesoscopic Regime
266(1)
10.6 Illustrative Case Studies
267(16)
10.6.1 Surface and Defect Structures of WTe2 Investigated by UHV-STM
267(2)
10.6.2 Organic Thin Film and Surface Mechanical Characterization
269(4)
10.6.3 AFM Analysis of 'Soft' Biological Materials
273(5)
10.6.4 Nanotribology of Solid Lubricants
278(5)
References
283(4)
11 Low Energy Ion Scattering
D.J. O'Connor
287(20)
11.1 Qualitative Surface Analysis
287(2)
11.2 Advantage of Recoil Detection
289(2)
11.3 Quantitative Analysis
291(8)
11.3.1 Scattered Ion Yield
291(1)
11.3.2 Differential Scattering Cross Section
291(1)
11.3.3 Charge Exchange
292(3)
11.3.4 Relative Measurements
295(2)
11.3.5 Standards
297(2)
11.4 Surface Structural Analysis
299(3)
11.4.1 Multiple Scattering
299(1)
11.4.2 Impact Collision Ion Surface Scattering (ICISS)
300(2)
11.5 Experimental Apparatus
302(2)
References
304(3)
12 Reflection High Energy Electron Diffraction
G.L. Price
307(12)
12.1 Theory
309(3)
12.2 Applications
312(6)
References
318(1)
13 Low Energy Electron Diffraction
P.J. Jennings, C.Q. Sun
319(18)
13.1 The Development of LEED
319(1)
13.2 The LEED Experiment
320(4)
13.2.1 Sample Preparation
323(1)
13.2.2 Data Collection
323(1)
13.3 Diffraction from a Surface
324(2)
13.3.1 Bragg Peaks in LEED Spectra
325(1)
13.4 LEED Intensity Analysis
326(2)
13.5 LEED Fine Structure
328(1)
13.6 Applications of LEED
329(4)
13.6.1 Determination of the Symmetry and Size of the Unit Mesh
329(1)
13.6.2 Unit Meshes for Chemisorbed Systems
330(1)
13.6.3 LEED Intensity Analysis
330(2)
13.6.4 Surface Barrier Analysis
332(1)
13.7 Conclusion
333(1)
References
334(3)
14 Ultraviolet Photoelectron Spectroscopy of Solids
R. Leckey
337(10)
14.1 Experimental Considerations
339(1)
14.2 Angle Resolved UPS
340(4)
14.3 Fermi Surface Studies
344(1)
References
345(2)
15 EXAFS
R.F. Garrett, G.J. Foran
347(30)
15.1 Introduction
347(1)
15.2 Experimental Details
348(11)
15.2.1 Synchrotron Radiation
350(2)
15.2.2 Synchrotron Beamlines for EXAFS
352(2)
15.2.3 Detectors
354(1)
15.2.4 The Sample
355(2)
15.2.5 Acquiring EXAFS Data
357(2)
15.3 Theory of X-ray Absorption
359(3)
15.3.1 EXAFS
359(2)
15.3.2 XANES
361(1)
15.4 EXAFS Analysis
362(4)
15.4.1 Data Reduction
362(1)
15.4.2 Conversion to k-space
363(1)
15.4.3 Background Subtraction
363(1)
15.4.4 Fourier Transformation
364(1)
15.4.5 Fourier Filtering and Back Transformation
364(1)
15.4.6 Modelling and Least Squares Fitting to the EXAFS Equation
365(1)
15.5 Case Studies
366(11)
15.5.1 Surface EXAFS of Titanium Nanostructure Thin Films
366(4)
15.5.2 Ion-Implantation Induced Amorphisation of Germanium
370(1)
References
371(6)
Part III Processes and Applications
16 Minerals, Ceramics and Glasses
R.St.C. Smart
377(28)
16.1 Minerals
380(9)
16.1.1 Iron Oxides in Mineral Mixtures
380(1)
16.1.2 Surface Layers on Minerals
381(1)
16.1.3 Mineral Processing of Sulfide Ores
381(5)
16.1.4 Adsorption and Reaction of Oxide and Clay Minerals
386(1)
16.1.5 Surface Modification of Minerals
387(2)
16.2 Ceramics
389(6)
16.2.1 Leaching and Dissolution
390(2)
16.2.2 Ceramic Surface Layers: Bioceramics
392(3)
16.3 Glasses
395(10)
16.3.1 Leached and Recrystallised surfaces
395(3)
16.3.2 Surface Modification of Glass Surfaces
398(2)
References
400(5)
17 Characterization of Catalysts by Surface Analysis
N.K. Singh, B.G. Baker
405(30)
17.1 Examples of Catalytic Systems Studied by XPS
408(12)
17.1.1 Alumina
408(1)
17.1.2 Tungsten Oxide Catalysts
409(3)
17.1.3 Palladium on Magnesia
412(2)
17.1.4 Cobalt on Kieselguhr Catalysts
414(2)
17.1.5 Iron Catalysts
416(4)
17.2 Examples of Catalytic Systems Studied by FT-Infrared Spectroscopy
420(12)
17.2.1 ZSM-5 Zeolites
420(6)
17.2.2 Thin Alumina Films
426(2)
17.2.3 Rhodium Supported Alumina Films
428(1)
17.2.4 Copper Supported Silica Films
429(3)
17.3 Conclusion
432(1)
References
432(3)
18 Application to Semiconductor Devices
P.W. Leech, P. Ressel
435(20)
18.1 Micro and Nano-Analysis of Integrated Circuits
436(7)
18.2 Analytical Techniques in the Characterisation of Ohmic Metal/Semiconductor Contacts
443(9)
18.3 Summary
452(1)
References
452(3)
19 Characterisation of Oxidised Surfaces
J.L. Cocking, G.R. Johnston
455(18)
19.1 The Oxidation Problem
456(1)
19.2 Oxidation of Co-22Cr-11A1
457(7)
19.2.1 Chemical Characterisation
458(1)
19.2.2 Scanning Auger Microscopy
458(1)
19.2.3 Rutherford Backscattering Analysis
459(5)
19.3 Oxidation of Ni-18Cr-6A1 0.5Y
464(9)
19.3.1 Extended X-Ray Absorption Fine Structure
466(5)
References
471(2)
20 Coated Steel
R.Payling
473(16)
20.1 Applications
474(12)
20.1.1 Grain Boundaries in Steel
474(1)
20.1.2 Steel Surface
475(3)
20.1.3 Alloy Region
478(1)
20.1.4 Metallic Coatings
478(5)
20.1.5 Treated Metallic Coating Surface
483(1)
20.1.6 Metal Polymer Interface
483(1)
20.1.7 Polymer Surface
484(2)
20.2 Conclusion
486(1)
References
486(3)
21 Thin Film Analysis
G.C. Morris
489(16)
21.1 Thin Film Photovoltaics
490(2)
21.1.1 Use for Solar Electricity
490(1)
21.1.2 The Thin Film Solar Cell: Glass/ITO/mCdS/pCdTe/Au
491(1)
21.2 Film Purity
492(4)
21.2.1 Low Level Impurities Qualitative
492(2)
21.2.2 Low Level Impurities Quantitative
494(1)
21.2.3 Doping Profiles in Thin Films
495(1)
21.3 Composition and Thickness of Layered Films
496(5)
21.3.1 Composition Gradation in Films, e.g. CdxHg1-xTe Films on Platinum
496(1)
21.3.2 Thin Overlayers on Films
497(4)
21.4 Beam Effects in Thin Film Analysis
501(1)
21.5 Conclusion
502(3)
22 Identification of Adsorbed Species
B.G. Baker
505(14)
22.1 Examples of Adsorption Studies
505(13)
22.1.1 Nitric Oxide Adsorption on Metals
505(6)
22.1.2 Aurocyanide Adsorption on Carbon
511(3)
22.1.3 Adsorbed Methoxy on Copper and Platinum
514(4)
22.2 Conclusion
518(1)
References
518(1)
23 Surface Analysis of Polymers
H.A.W. StJohn, T.R. Gengenbach, P.G. Hartley, H.J. Griesser
519(34)
23.1 Specific Properties of Polymers
520(5)
23.2 Surface Contamination and Additives
525(4)
23.3 Contact Angle Measurements
529(1)
23.4 X-Ray Photoelectron Spectroscopy (XPS)
529(8)
23.4.1 General Aspects
529(2)
23.4.2 Angle-Resolved XPS
531(1)
23.4.3 Inelastic Mean Free Path in Polymers
532(1)
23.4.4 Cold Stage XPS
533(1)
23.4.5 Derivatization of Chemical Groups
534(3)
23.5 Secondary Ion Mass Spectrometry (SIMS)
537(3)
23.6 Scanning Probe Microscopy Methods: Scanning Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM)
540(3)
23.7 Specimen Damage
543(4)
23.8 Charge Correction
547(1)
23.9 Grazing Angle Infrared Spectroscopy
548(1)
References
549(4)
24 Glow Discharge Optical Emission Spectrometry
T. Neus, R. Payling
553(3)
24.1 Instrument
553(2)
24.2 Theory
555(1)
24.3 Applications
556(1)
24.3.1 Near Surface
556(1)
24.3.2 Coatings
556(1)
24.3.3 Semiconductor Processing
557(2)
References
559
Part IV Appendix
Acronyms Used in Surface and Thin Film Analysis
563(6)
Surface Science Bibliography
569(8)
Index
577

An electronic version of this book is available through VitalSource.

This book is viewable on PC, Mac, iPhone, iPad, iPod Touch, and most smartphones.

By purchasing, you will be able to view this book online, as well as download it, for the chosen number of days.

Digital License

You are licensing a digital product for a set duration. Durations are set forth in the product description, with "Lifetime" typically meaning five (5) years of online access and permanent download to a supported device. All licenses are non-transferable.

More details can be found here.

A downloadable version of this book is available through the eCampus Reader or compatible Adobe readers.

Applications are available on iOS, Android, PC, Mac, and Windows Mobile platforms.

Please view the compatibility matrix prior to purchase.